On a Rogers-Ramanujan type identity from crystal base theory

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Crystal Rogers-ramanujan Type Identities

Abstract. By using the KMN2 crystal base character formula for the basic A (1) 2 module, and the principally specialized Weyl-Kac character formula, we obtain a Rogers-Ramanujan type combinatorial identity for colored partitions. The difference conditions between parts are given by the energy function of certain perfect A (1) 2 crystal. We also recall some other identities for this type of colo...

متن کامل

A Determinant Identity that Implies Rogers-Ramanujan

We give a combinatorial proof of a general determinant identity for associated polynomials. This determinant identity, Theorem 2.2, gives rise to new polynomial generalizations of known Rogers-Ramanujan type identities. Several examples of new Rogers-Ramanujan type identities are given.

متن کامل

Finite Rogers-Ramanujan Type Identities

Polynomial generalizations of all 130 of the identities in Slater’s list of identities of the Rogers-Ramanujan type are presented. Furthermore, duality relationships among many of the identities are derived. Some of the these polynomial identities were previously known but many are new. The author has implemented much of the finitization process in a Maple package which is available for free do...

متن کامل

Overpartition Theorems of the Rogers-ramanujan Type

We give one-parameter overpartition-theoretic analogues of two classical families of partition identities: Andrews’ combinatorial generalization of the Gollnitz-Gordon identities and a theorem of Andrews and Santos on partitions with attached odd parts. We also discuss geometric counterparts arising from multiple q-series identities. These involve representations of overpartitions in terms of g...

متن کامل

Rogers-ramanujan Type Identities for Alternating Knots

We highlight the role of q-series techniques in proving identities arising from knot theory. In particular, we prove Rogers-Ramanujan type identities for alternating knots as conjectured by Garoufalidis, Lê and Zagier.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2017

ISSN: 0002-9939,1088-6826

DOI: 10.1090/proc/13694